LinuxSir.cn,穿越时空的Linuxsir!

 找回密码
 注册
搜索
热搜: shell linux mysql
查看: 736|回复: 3

分区信息不明白,那位解释一下?

[复制链接]
发表于 2006-7-20 14:00:08 | 显示全部楼层 |阅读模式
kaka@sl:~$ df
文件系统                  1K-块             已用           可用             已用%      挂载点
/dev/hda11             3842376       641404      3005784     18%         /
tmpfs                      257996         0                 257996       0%          /dev/shm
/dev/hda12             10009296    137844       9363000      2%          /home
tmpfs                      10240           128            10112           2%         /dev



其中tmpfs 是什么东西阿?怎么会着么多有两百多兆?而且怎么看不到swap分区的信息呢?

哪位解释一下阿?
 楼主| 发表于 2006-7-20 14:02:16 | 显示全部楼层

我用的是Hiweed Debian Etch基本系统,vmware安装在物理盘上的!
回复 支持 反对

使用道具 举报

发表于 2006-7-20 22:09:20 | 显示全部楼层
跟我的一样,,/dev/shm 是装 qemu 之后才有的,
/dev 听说 是设备管理用的,,

反正是占内存不大
回复 支持 反对

使用道具 举报

发表于 2006-7-21 00:31:26 | 显示全部楼层
引自内核源文件 Documentation/filesystems/tmpfs.txt
  1. Tmpfs is a file system which keeps all files in virtual memory.


  2. Everything in tmpfs is temporary in the sense that no files will be
  3. created on your hard drive. If you unmount a tmpfs instance,
  4. everything stored therein is lost.

  5. tmpfs puts everything into the kernel internal caches and grows and
  6. shrinks to accommodate the files it contains and is able to swap
  7. unneeded pages out to swap space. It has maximum size limits which can
  8. be adjusted on the fly via 'mount -o remount ...'

  9. If you compare it to ramfs (which was the template to create tmpfs)
  10. you gain swapping and limit checking. Another similar thing is the RAM
  11. disk (/dev/ram*), which simulates a fixed size hard disk in physical
  12. RAM, where you have to create an ordinary filesystem on top. Ramdisks
  13. cannot swap and you do not have the possibility to resize them.

  14. Since tmpfs lives completely in the page cache and on swap, all tmpfs
  15. pages currently in memory will show up as cached. It will not show up
  16. as shared or something like that. Further on you can check the actual
  17. RAM+swap use of a tmpfs instance with df(1) and du(1).


  18. tmpfs has the following uses:

  19. 1) There is always a kernel internal mount which you will not see at
  20.    all. This is used for shared anonymous mappings and SYSV shared
  21.    memory.

  22.    This mount does not depend on CONFIG_TMPFS. If CONFIG_TMPFS is not
  23.    set, the user visible part of tmpfs is not build. But the internal
  24.    mechanisms are always present.

  25. 2) glibc 2.2 and above expects tmpfs to be mounted at /dev/shm for
  26.    POSIX shared memory (shm_open, shm_unlink). Adding the following
  27.    line to /etc/fstab should take care of this:

  28.         tmpfs        /dev/shm        tmpfs        defaults        0 0

  29.    Remember to create the directory that you intend to mount tmpfs on
  30.    if necessary (/dev/shm is automagically created if you use devfs).

  31.    This mount is _not_ needed for SYSV shared memory. The internal
  32.    mount is used for that. (In the 2.3 kernel versions it was
  33.    necessary to mount the predecessor of tmpfs (shm fs) to use SYSV
  34.    shared memory)

  35. 3) Some people (including me) find it very convenient to mount it
  36.    e.g. on /tmp and /var/tmp and have a big swap partition. And now
  37.    loop mounts of tmpfs files do work, so mkinitrd shipped by most
  38.    distributions should succeed with a tmpfs /tmp.

  39. 4) And probably a lot more I do not know about :-)


  40. tmpfs has three mount options for sizing:

  41. size:      The limit of allocated bytes for this tmpfs instance. The
  42.            default is half of your physical RAM without swap. If you
  43.            oversize your tmpfs instances the machine will deadlock
  44.            since the OOM handler will not be able to free that memory.
  45. nr_blocks: The same as size, but in blocks of PAGE_CACHE_SIZE.
  46. nr_inodes: The maximum number of inodes for this instance. The default
  47.            is half of the number of your physical RAM pages, or (on a
  48.            a machine with highmem) the number of lowmem RAM pages,
  49.            whichever is the lower.

  50. These parameters accept a suffix k, m or g for kilo, mega and giga and
  51. can be changed on remount.  The size parameter also accepts a suffix %
  52. to limit this tmpfs instance to that percentage of your physical RAM:
  53. the default, when neither size nor nr_blocks is specified, is size=50%

  54. If nr_blocks=0 (or size=0), blocks will not be limited in that instance;
  55. if nr_inodes=0, inodes will not be limited.  It is generally unwise to
  56. mount with such options, since it allows any user with write access to
  57. use up all the memory on the machine; but enhances the scalability of
  58. that instance in a system with many cpus making intensive use of it.


  59. tmpfs has a mount option to set the NUMA memory allocation policy for
  60. all files in that instance (if CONFIG_NUMA is enabled) - which can be
  61. adjusted on the fly via 'mount -o remount ...'

  62. mpol=default             prefers to allocate memory from the local node
  63. mpol=prefer:Node         prefers to allocate memory from the given Node
  64. mpol=bind:NodeList       allocates memory only from nodes in NodeList
  65. mpol=interleave          prefers to allocate from each node in turn
  66. mpol=interleave:NodeList allocates from each node of NodeList in turn

  67. NodeList format is a comma-separated list of decimal numbers and ranges,
  68. a range being two hyphen-separated decimal numbers, the smallest and
  69. largest node numbers in the range.  For example, mpol=bind:0-3,5,7,9-15

  70. Note that trying to mount a tmpfs with an mpol option will fail if the
  71. running kernel does not support NUMA; and will fail if its nodelist
  72. specifies a node >= MAX_NUMNODES.  If your system relies on that tmpfs
  73. being mounted, but from time to time runs a kernel built without NUMA
  74. capability (perhaps a safe recovery kernel), or configured to support
  75. fewer nodes, then it is advisable to omit the mpol option from automatic
  76. mount options.  It can be added later, when the tmpfs is already mounted
  77. on MountPoint, by 'mount -o remount,mpol=Policy:NodeList MountPoint'.


  78. To specify the initial root directory you can use the following mount
  79. options:

  80. mode:        The permissions as an octal number
  81. uid:        The user id
  82. gid:        The group id

  83. These options do not have any effect on remount. You can change these
  84. parameters with chmod(1), chown(1) and chgrp(1) on a mounted filesystem.


  85. So 'mount -t tmpfs -o size=10G,nr_inodes=10k,mode=700 tmpfs /mytmpfs'
  86. will give you tmpfs instance on /mytmpfs which can allocate 10GB
  87. RAM/SWAP in 10240 inodes and it is only accessible by root.


  88. Author:
  89.    Christoph Rohland <cr@sap.com>, 1.12.01
  90. Updated:
  91.    Hugh Dickins <hugh@veritas.com>, 19 February 2006
复制代码
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

快速回复 返回顶部 返回列表